337 research outputs found

    Dissipative particle dynamics for interacting systems

    Full text link
    We introduce a dissipative particle dynamics scheme for the dynamics of non-ideal fluids. Given a free-energy density that determines the thermodynamics of the system, we derive consistent conservative forces. The use of these effective, density dependent forces reduces the local structure as compared to previously proposed models. This is an important feature in mesoscopic modeling, since it ensures a realistic length and time scale separation in coarse-grained models. We consider in detail the behavior of a van der Waals fluid and a binary mixture with a miscibility gap. We discuss the physical implications of having a single length scale characterizing the interaction range, in particular for the interfacial properties.Comment: 25 pages, 12 figure

    Dynamics of Polydisperse Polymer Mixtures

    Full text link
    We develop a general analysis of the diffusive dynamics of polydisperse polymers in the presence of chemical potential gradients, within the context of the tube model (with all species entangled). We obtain a set of coupled dynamical equations for the time evolution of the polymeric densities with explicitly derived coefficients. For the case of chemical polydispersity (a set of chains that are identical except for having a continuous spectrum of enthalpic interaction strengths) the coupled equations can be fully solved in certain cases. For these we study the linearised mode spectrum following a quench through the spinodal, with and without a passive (polymeric) solvent. We also study the more conventional case of length polydisperse chains in a poor solvent.Comment: 21 pages, 3 figures,revised versio

    Negative fluctuation-dissipation ratios in the backgammon model

    Full text link
    We analyze fluctuation-dissipation relations in the Backgammon model: a system that displays glassy behavior at zero temperature due to the existence of entropy barriers. We study local and global fluctuation relations for the different observables in the model. For the case of a global perturbation we find a unique negative fluctuation-dissipation ratio that is independent of the observable and which diverges linearly with the waiting time. This result suggests that a negative effective temperature can be observed in glassy systems even in the absence of thermally activated processes.Comment: 32 pages, 10 figures. Accepted in PR

    A practical density functional for polydisperse polymers

    Full text link
    The Flory Huggins equation of state for monodisperse polymers can be turned into a density functional by adding a square gradient term, with a coefficient fixed by appeal to RPA (random phase approximation). We present instead a model nonlocal functional in which each polymer is replaced by a deterministic, penetrable particle of known shape. This reproduces the RPA and square gradient theories in the small deviation and/or weak gradient limits, and can readily be extended to polydisperse chains. The utility of the new functional is shown for the case of a polydisperse polymer solution at coexistence in a poor solvent.Comment: 9 pages, 3 figure

    Bistability, oscillations and bidirectional motion of ensemble of hydrodynamically-coupled molecular motors

    Full text link
    We analyze the collective behavior of hydrodynamically coupled molecular motors. We show that the local fluxes induced by motors displacement can induce the experimentally observed bidirectional motion of cargoes and vesicles. By means of a mean--field approach we show that sustained oscillations as well as bistable collective motor motion arise even for very large collection of motors, when thermal noise is irrelevant. The analysis clarifies the physical mechanisms responsible for such dynamics by identifying the relevant coupling parameter and its dependence on the geometry of the hydrodynamic coupling as well as on system size. We quantify the phase diagram for the different phases that characterize the collective motion of hydrodynamically coupled motors and show that sustained oscillations can be reached for biologically relevant parameters, hence demonstrating the relevance of hydrodynamic interactions in intracellular transport

    Local size segregation in polydisperse hard sphere fluids

    Get PDF
    The structure of polydisperse hard sphere fluids, in the presence of a wall, is studied by the Rosenfeld density functional theory. Within this approach, the local excess free energy depends on only four combinations of the full set of density fields. The case of continuous polydispersity thereby becomes tractable. We predict, generically, an oscillatory size segregation close to the wall, and connect this, by a perturbation theory for narrow distributions, with the reversible work for changing the size of one particle in a monodisperse reference fluid.Comment: RevTeX, 4 pages, 3 figures, submitted to Phys. Rev. Let

    Universality of Fluctuation-Dissipation Ratios: The Ferromagnetic Model

    Get PDF
    We calculate analytically the fluctuation-dissipation ratio (FDR) for Ising ferromagnets quenched to criticality, both for the long-range model and its short-range analogue in the limit of large dimension. Our exact solution shows that, for both models, X∞=1/2X^\infty=1/2 if the system is unmagnetized while X∞=4/5X^\infty=4/5 if the initial magnetization is non-zero. This indicates that two different classes of critical coarsening dynamics need to be distinguished depending on the initial conditions, each with its own nontrivial FDR. We also analyze the dependence of the FDR on whether local and global observables are used. These results clarify how a proper local FDR (and the corresponding effective temperature) should be defined in long-range models in order to avoid spurious inconsistencies and maintain the expected correspondence between local and global results; global observables turn out to be far more robust tools for detecting non-equilibrium FDRs.Comment: 14 pages, revtex4, published version. Changes from v1: added discussion of refs [16,36,37], other observables and local correlation/response in short-range mode

    Test of the fluctuation theorem for stochastic entropy production in a nonequilibrium steady state

    Get PDF
    We derive a simple closed analytical expression for the total entropy production along a single stochastic trajectory of a Brownian particle diffusing on a periodic potential under an external constant force. By numerical simulations we compute the probability distribution functions of the entropy and satisfactorily test many of the predictions based on Seifert's integral fluctuation theorem. The results presented for this simple model clearly illustrate the practical features and implications derived from such a result of nonequilibrium statistical mechanics.Comment: Accepted in Phys. Rev.

    Universality class of fiber bundles with strong heterogeneities

    Get PDF
    We study the effect of strong heterogeneities on the fracture of disordered materials using a fiber bundle model. The bundle is composed of two subsets of fibers, i.e. a fraction 0<\alpha<1 of fibers is unbreakable, while the remaining 1-\alpha fraction is characterized by a distribution of breaking thresholds. Assuming global load sharing, we show analytically that there exists a critical fraction of the components \alpha_c which separates two qualitatively different regimes of the system: below \alpha_c the burst size distribution is a power law with the usual exponent \tau=5/2, while above \alpha_c the exponent switches to a lower value \tau=9/4 and a cutoff function occurs with a diverging characteristic size. Analyzing the macroscopic response of the system we demonstrate that the transition is conditioned to disorder distributions where the constitutive curve has a single maximum and an inflexion point defining a novel universality class of breakdown phenomena
    • …
    corecore